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Small-scale turbulence in the plankton: low-order
deterministic chaos or high-order stochasticity?
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Abstract

Almost all regions of the oceans are heavily in-uenced by the e.ects of physical processes such
as turbulence which in turn in-uence the distribution and ecology of organisms that occupy these
regions. There is a real need for additional focus placed on the precise knowledge of both physical
and biological processes which is often di0cult using basic time series analysis. In that way,
we applied nonlinear analysis techniques to high frequency time series of temperature, salinity
and phytoplankton concentrations recorded in di.erent hydrodynamical regimes related to tidal
forcing in a tidally mixed coastal ecosystem. Techniques devoted to the identi5cation of low-order
deterministic chaos cannot 5nd evidence of chaos. While a lower dimensionality was identi5ed
in low hydrodynamic conditions, the results rather suggest stochastic time series with many
degrees of freedom: no obvious attractor in phase space trajectory, LLE indistinguishable from
zero, absence of convergence of the correlation integral. We then applied to these data speci5c
multifractal analysis techniques and showed that these time series clearly exhibit high-order
stochasticity. In addition, the stochastic structure of purely passive scalars (i.e., temperature and
salinity) remained invariant, while the one of phytoplankton biomass must be regarded as highly
structured in time by both hydrodynamic and advective processes.
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1. Introduction

Since the seminal studies of chaos in discrete time models in population ecology [1–
3], the issue of chaotic dynamics in ecological systems has been widely controversial
[4–6]. Chaos in ecology has nevertheless been the subject of an increasing amount of
literature. In theoretical ecology, there are many examples of temporal population mod-
els which exhibit chaos. The interaction of three variables in a predator-prey-nutrient
system [7] is now a well-studied chaotic system, as chaotic dynamics expected through
a trophic coupling of three species [8]. More recently, an ocean ecosystem model also
exhibits chaotic properties related to the external seasonal forcing [9]. In particular,
the issues raised by chaos theory in ecology have been the subject of several reviews
[10–15].
The compelling reasons for the emerging chaos theory in ecology is based on the

hope that complex systems could be explained by relatively low-order processes. This
leads to the development of a suite of algorithms aimed at the detection of chaotic be-
haviour and the classi5cation of system dynamics [14,15]. While such approaches have
been applied to a wide variety of time series [13,16,17], as to detect dynamic spatial
chaos [18–20], the development of nonlinear thinking to marine ecology has a more
recent history. Only a few studies have been devoted to detect chaotic signature in both
marine time series and transects, and led to controversial results. Thus, Sugihara and
May [21] found evidence for chaotic dynamics in time series of weekly diatom counts,
and Sche.er [22] argued that chaotic deterministic dynamics should be commonplace
in plankton communities. On the contrary, Ascioti et al. [23] and Strutton et al. [24,25]
did not 5nd any evidence of chaotic dynamics in both zooplankton and phytoplankton
time series and phytoplankton transects, respectively.
More recently, a new 5eld of marine research has been devoted to the stochastic

characterization of intermittent processes in the framework of multifractals [26–34].
Multifractals, which has been recently reviewed by Pascual et al. [26] and Seuront et
al. [32], can be regarded as a generalization of fractal geometry [35] initially introduced
to describe the relationship between a given quantity and the scale at which it is mea-
sured. While fractal geometry describes the structure of a given descriptor with the help
of only one parameter (i.e., the so-called fractal dimension), multifractals characterize
its detailed variability by an in5nite number of sets (roughly speaking, each of them
corresponds to the fraction of space where data exceed a given threshold), each with its
own fractal dimension. Such approaches, which do not require any statistical preconcep-
tion on the data, provide very good approximations—at all scales and all intensities—
of the statistics of an intermittently -uctuating descriptor, and determine the probability
description of the descriptor values; see [26,32] for further details. Moreover, the sta-
tistical consequence of intermittency being a strong departure from Gaussianity [36],
multifractals provide a powerful alternative to basic random walk models explicitly
based on Gaussian statistics [37]. Thus, considering that in the general background of
spatio-temporal intermittency encountered in the ocean [38], knowledge of the precise
statistics of any intermittent 5elds may avoid the bias introduced by chronic undersam-
pling of an intermittent signal [39], a stochastic multifractal framework is particularly
well suited to describe the structure of quantities that vary intermittently [26,30–34].
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Several misconceptions about chaos precisely pertain to its relationship to stochastic
behaviour [14]. Chaos and stochasticity are nevertheless not equivalent: not only do the
underlying mechanisms di.er, but the consequences for observers are very di.erent.
In purely deterministic systems, predictions made from the governing equations will
be perfect. Chaotic systems are predictable over short time scales because they are
deterministic; the lack of predictive power over long time scales stems from the lack
of complete information about the exact location of initial conditions. In contrast, purely
stochastic systems are unpredictable over any time scales because of their probabilistic
nature. In such approaches, the variability of a given descriptor is driven by “news”
events, which represent exogenous variables—exogenous in the sense that they are not
a part of an internal mechanism which drives the descriptor -uctuations. The branches
of a tree move because of the wind, which is “exogenous” to the tree, and therefore
“news” to it, whereas a chaotic model of the motion of trees would assume the existence
of a simple deterministic ‘nonlinear’ engine within the tree (i.e., endogenous) which
generates chaotic motion by a simple mechanism of feedback of the motion of the
tree upon itself. Finally, the distinction between stochastic and deterministic dynamics
has important practical implications. For instance, if -uctuations in population sizes are
driven primarily by deterministic factors, and if those factors are understood, then the
dynamics are predictable over short time scales. Management of such populations is
feasible. On the other hand, if -uctuations are driven primarily by exogenous stochastic
forces, then prediction and management become much more di0cult.
Thus, given that deterministic equations in a small number of variables can generate

complicated behaviour, the question arises: how much of the complicated behaviour
observed in nature can be described by a small number of variables? This question
has been widely addressed in the framework of turbulence. Ruelle and Takens [40]
indeed showed that near the transition to turbulence, the many degrees of freedom of
turbulence are coupled coherently, and lead to an enormous reduction in dimension
(i.e., low-order deterministic chaos). However, both empirical and theoretical studies
have demonstrated that fully developed turbulence [41–43] was rather characterized by
its multifractal properties (i.e., high-order stochasticity). Previous empirical studies of
phytoplankton and nutrient patchiness in turbulent environments [30–34] nevertheless
suggested potential e.ects of both turbulence intensities and advective processes on
the multifractal structure of both physical (i.e., temperature and salinity) and biological
(i.e., phytoplankton biomass) parameters.
Such transitions between low-order deterministic chaos and high-order stochasticity

might then be observed in the tidally mixed waters of the Eastern English Channel,
where turbulence intensities may vary by more than two orders of magnitude over one
tidal cycle [34,44], and is generally thought as driving phytoplankton biomass vari-
ability [30–32]. Herein, the goal of this paper is 5rst to 5nd out whether time series
of physical (temperature and salinity) and biological (phytoplankton biomass) param-
eters recorded in tidally mixed waters are chaotic or not, second, to investigate the
potential e.ects of di.erential tidal forcing on the chaotic and/or stochastic nature of
the variables in question. Finally, we compare the chaotic and/or stochastic structure
of purely passive scalars (i.e., temperature and salinity) with the one of phytoplank-
ton biomass in order to infer the reality of referring to phytoplankton cells as passive
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scalars. In order to identify potential chaotic signature, several complementary tech-
niques of phase-space reconstruction were applied to temporal data from the marine
environment. On the other hand, the stochastic structure of the data sets has been
investigated using multifractal formalism.

2. Study area and sampling

The sampling experiment was conducted during 60 h (i.e., 5ve tidal cycles) in a
period of spring tide, from 28 to 30 March 1998, at an anchor station located in the
coastal waters of the Eastern English Channel (50◦47′300 N, 1◦33′500 E). The tidal
range in this system is one of the largest in the world, ranging from 3 to 9 m. Tides
present a residual circulation parallel to the coast, with nearshore waters drifting from
the English Channel into the North Sea. This coastal -ow [45] is in-uenced by the
-uvial supplies, distributed from the Bay of Seine to the Straits of Dover, and separated
from o.shore waters by a tidally controlled frontal area. It is characterized by its low
salinity, turbidity, phytoplankton richness and productivity [45,46], and is separated
from o.shore waters by a tidally controlled frontal area [47,48]. Temperature, salinity
and in vivo -uorescence were simultaneously recorded at 2 Hz from a single depth
(5 m) with a SBE 25 Sealogger CTD (Conductivity–Temperature–Depth) probe, and
a Sea Tech -uorometer, respectively. Every hour, samples of water were taken at 5 m
depth to estimate chlorophyll a concentrations, which appear signi5cantly correlated
with in vivo -uorescence (Kendall’s �= 0:778, p¡ 0:01). In the following, the latter
parameter will then be regarded as a direct estimate of phytoplankton biomass. Because
the main objective of this contribution is to investigate the potential e.ect of varying
tidal forcing on the local structure of physical and biological parameters, the data
analyzed here consist in 24 time series (labelled from S1 to S24) of 1 h duration
(7200 data points) re-sampled from the original dataset in order to be representative of
the di.erent conditions of tidal current speed and direction, taken every 10 min, from
the sampling depth (Table 1).

3. Methods

3.1. Data pre-processing

Time series analysis requires the assumption of at least reduced stationarity, i.e., the
mean and the variance of a time series depend only on its length and not on the abso-
lute time [49]. The existence and the signi5cativity of any potential linear trends was
testing calculating Kendall’s � correlation which does not require any hypothesis about
the characteristics of the original dataset distribution (Kendall’s coe0cient of correla-
tion was used in preference to Spearman’s coe0cient of correlation � because Spear-
man’s � gives greater weight to pairs of ranks that are further apart, while Kendall’s
� weights each disagreement in rank equally, see [50] for further developments). We
then eventually detrended time series 5tting linear regressions to the original data by
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Table 1
Tidal conditions, water column depth and mean values of temperature, salinity and in vivo -uorescence for
the 24 studied data sets

Tidal current Depth T S F

Speed (m s−1) Dir (◦)

S1 0.55 240 21.56 6.55 34.60 18.32
S2 0.45 220 22.49 6.53 34.60 15.20
S3 0.10 60 27.38 6.51 34.62 10.90
S4 0.95 15 28.28 6.50 34.66 9.39
S5 0.90 10 26.21 6.49 34.70 8.23
S6 0.15 10 23.25 6.51 34.65 10.25
S7 0.32 260 21.52 6.53 34.61 15.02
S8 0.62 230 22.21 6.52 34.62 17.24
S9 0.10 85 27.19 6.50 34.65 11.45
S10 0.98 10 28.47 6.49 34.72 6.80
S11 1.00 10 26.53 6.49 34.67 7.29
S12 0.30 10 23.66 6.50 34.64 11.00
S13 0.35 290 21.38 6.53 34.62 17.40
S14 0.30 200 21.72 6.55 34.62 15.82
S15 0.11 140 26.19 6.52 34.66 13.46
S16 0.80 10 28.65 6.5 34.69 10.75
S17 1.10 10 27.15 6.49 34.70 6.64
S18 0.40 10 24.15 6.51 34.68 7.35
S19 0.35 260 21.75 6.53 34.63 12.64
S20 0.87 250 21.68 6.55 34.62 17.69
S21 0.73 230 25.23 6.55 34.61 15.16
S22 0.18 10 28.65 6.53 34.71 8.30
S23 1.04 10 27.50 6.50 34.66 5.37
S24 0.60 10 25.95 6.50 34.62 3.87

least squares and used the regression residuals in further analysis. The purpose of this
is to eliminate aliasing in further analysis due to large scale structures present in the
data sets, such as in monotonically increasing or decreasing trends. In order to provide
direct comparisons between the di.erent parameters, the time observations, yi, were
converted into normalized, dimensionless descriptors, xi, following:

xi =
yi − ymin

ymax − ymin
; (1)

where ymax and ymin are the maximum and minimum values of the series, respectively.
Samples of the resulting time series are given in Fig. 1.

3.2. The search for deterministic chaos

In the following our datasets are regarded as 5nite sets of time observations, xi,
taken at regular intervals, 0:5 s for temperature, salinity and in vivo -uorescence time
series:

Xi = {x(1); x(2); x(3); : : : ; x(Nobs)} ; (2)
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Fig. 1. Normalized temperature (a), salinity (b) and in vivo -uorescence (c) time series recorded in the
Eastern English Channel, shown for data set S1.
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where Nobs is the total number of observations in each set. The time length of any
observed period, T , is related to Nobs as

T = NobsUt : (3)

More speci5cally, the three methods used here to investigate the properties of our
sets, i.e., the PTM [51,52], Lyapunov exponents estimates [53], and the correlation
integral method [54], are based on the assumption that the dynamics of any underlying
dynamical systems can be described in some multidimensional phase-space from the
knowledge of the time series of a single observation x(t) by constructing E-dimensional
vectors de5ned by:

X̃ (t) = (x(t); x(t − �); : : : ; x(t − (E − 1)�) ; (4)

where E is the embedding dimension (i.e., the dimension of the vectors), and �=pUt is
the lag (i.e., the number of data points separating each of the vector’s elements). As an
example, one can observe that for E=3 and �=1, the vector X̃ (t) consists of x(t) and
the E − 1 immediately preceding points of the time series (i.e., the set of vectors
{X̃ (3); X̃ (4); : : : ; X̃ (n)} is denoted as {(x(3); x(2); x(1)); ((x(4); x(3); x(2)); : : : ; ((x(n);
x(n− 1); (x(n− 2))}).
In the above case, the delay time � must be chosen so as the result in points that

are not correlated to previously plotted points. Thus, a 5rst choice of � should be in
terms of the decorrelation time of the time series [55]. A straightforward procedure is
to consider the decorrelation time equal to the lag at which the autocorrelation function
for the 5rst time attains the value of zero. One may also note here that no averaging
nor 5ltering have been employed since it is known that such data manipulations can
obscure the presence of chaos [13].

3.2.1. The Packard–Takens method (PTM)
Dissipative dynamical systems which exhibit chaotic behaviour often have a strange

attractor in phase-space [54]. It is for instance the case for the movements of atmo-
spheric -ows which produce a speci5c phase-space trajectory now widely known as the
Lorentz’s attractor [56]. More precisely, a strange attractor has orbits that lie within a
de5ned region of phase-space but the orbits never intersect and never follow the same
trajectory twice.
The phase-space attractor of a system is then a map of the changing conditions in the

system: each point on the attractor is a summary of all the variables a.ecting the system
at a moment in time. As the system evolves, changes in the variables result in a di.erent
location of the point in phase-space. The points in phase-space trace a trajectory that
summarizes the changes of the system. Three-dimensional phase-space diagrams of the
attractor describing the time series were produced using the ‘time delay’ method [51].
In practice, the one-dimensional time series, and thus all the factor a.ecting it, can be
represented by the trajectory of points in three-dimensional phase-space. The attractor
is created by plotting each value as a function of its preceding value, or in other
words, from the plot of x(t + 1) vs. x(t), where x is the actual value (in our case the
normalized, dimensionless descriptors) and t the index of the point. It can be noticed
here that an attractor with a regular shape will also emerge in plots using x(t + 2) or
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x(t + 3) for example, or x(t + n), with many n. This procedure was repeated for each
successive point in the time series and the resultant points were connected producing
the phase-space trajectory.

3.2.2. Largest Lyapunov exponents (LLE)
The limits of predictability are set by how fast the trajectories diverge from nearby

initial conditions. This feature is quanti5ed by Lyapunov exponents which are the av-
erage exponential rates of divergence or convergence of nearby orbits in phase-space.
Any systems containing at least one positive Lyapunov exponent is de5ned to be
chaotic, with the magnitude of the exponent re-ecting the time scale at which the sys-
tem dynamics become unpredictable. In other words, the larger the positive exponent,
the more chaotic the system, and the shorter the time scale of system predictability
[53].
To de5ne the Lyapunov exponents, imagine an in5nitesimal hypersphere of initial

conditions in the n-dimensional phase-space. There is one Lyapunov exponent for each
degree of freedom of the system. We observe the evolution of the hypersphere as
time progresses. The hypersphere will be deformed into a hyper-ellipsoid because the
evolution of the system. Then the ith Lyapunov exponent can be de5ned in terms of
the length of the ith principal axis, pi, of the ellipsoid as

�L = lim
�→∞

1
�
ln
pi(�)
pi(0)

; (5)

where the �L are ordered from largest to smallest in an algebraic sense [53,57]. A
minimum condition for chaos is that the LLE, �L, is positive.

In practice, we used an algorithm developed to estimate the LLE, �L, from a time
series by using a relatively simple procedure [53], and which has been demonstrated
to be robust over a large range of input parameters and relatively accurate for small,
noisy data sets [57]. The delay time � was chosen as the decorrelation time of the time
series, as previously mentioned. We carried the embedding dimension E from 2 to 10.

3.2.3. Correlation integral algorithm (CIA)
While the LLE is used to estimate the limits of predictability of a given time series,

the complementary CIA is devoted to the quantitative characterization of the attractor
of the series. As previously demonstrated [52], an attractor topologically equivalent to
the attractor of the system producing the data is obtained for every value of � and for
E su0ciently greater than the fractal dimension, i.e., E¿ (2D + 1).
From the new multidimensional time series de5ned by Eq. (4), the correlation inte-

gral [54] is de5ned as:

C(r) = lim
N→∞

1
N 2

N∑
j=1

N∑
i=j+1

�(r − |X̃ i − X̃ j|) ; (6)

where N = Nobs − p(n − 1) is the number of distinct pairs in the embedding space,
|X̃ i − X̃ j| is the Euclidean distance operator between the ith and jth sample, r is an
arbitrary time called ‘lag time’ (distance between vectors), and �(�) is the Heaviside
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function, de5ned as follows:

�(�) =

{
0 for �¡ 0

1 for �¿ 0 :
(7)

The correlation integral C(r) represents the probability that the distance between a
pair of randomly chosen points on the E-dimensional reconstruction will be less than
a distance r apart [54]. In the case of random processes, the phase-space trajectory is
directly linked to the volume of the considered E-dimensional space as:

C(r)˙
r→0

rE ; (8)

while for an attractor the phase-space trajectory is more compact and the correlation
integral is then characterized by its following scaling properties:

C(r)˙
r→0

r� ; (9)

where the exponent � is the correlation exponent (or correlation dimension); it can be
estimated as the slope of the log–log plot of C(r) vs. r, using a simple least square
method.
For chaotic data, � will approach a constant value as the embedding dimension E

is increased. That constant value is an estimate of the correlation dimension which
measures the local structure of the strange attractor. The dimension � of the strange
attractor indicates at least how many variables are necessary to describe evolution in
time. For instance, � = 2:5 indicates that a given time series can be described by a
system equation containing three independent variables.

3.3. High dimensionality and multifractal structure

As was implied in the introduction, high frequency -uctuations in the tidally mixed
coastal waters of the Eastern English Channel are far from Gaussian. Multifractal distri-
butions have this property, and they apply to signals with scaling characteristics [58,59],
as the one studied here may well have, as previously shown from the multifractal prop-
erties of temperature, salinity and phytoplankton biomass in similar areas [30–32,34].
Moreover, recent studies have demonstrated that multifractal processes generally lead
to universal multifractals with generators characterized by only three parameters H ,
C1, and ! [60,61]. H (06H6 1) characterizes the degree of non-conservation of the
process (i.e., H = 0 for stationary process). C1 is the codimension that characterizes
the sparseness of the process, and satis5es 06C16 1 for time series: C1 = 0 for a
homogeneous process and C1 is all the more high as the process is sparse, indicating
that the 5eld values corresponding to any given level of variability are more scarce. The
index !, called the LFevy index, is the degree of multifractality bounded between !=0
and != 2 corresponding to the monofractal case and to the maximum, or log-normal,
multifractal case, respectively. As ! increases, the more numerous are the variability
levels bounded between lower and higher values of the descriptor [32].
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There are several ways to estimate the universal parameter values. The parameters
H , C1 and ! can thus be estimated considering di.erent derivation of the qth order
structure functions, which can be regarded as a statistical generalization of the power
spectral analysis to higher order of moments [30–32,34,62–65], but also from the Dou-
ble Trace Moment technique [66–69], a very speci5c data analysis technique which
has been extensively explained elsewhere [32]. In the following, we only report the
results of the analysis process, for further explanations and details one may refer to a
recent review [32] wholly devoted to the introduction of universal multifractal concepts
and their related analysis techniques to marine ecology. More details on the universal
multifractal theoretical background can also be found in [41,60,61,70], Finally, for a
detailed discussion of what can be ecologically concluded from the use of multifractal
algorithms, one may refer to [32].

4. Results

4.1. Phase-space diagrams

The delay time � has been chosen as the decorrelation time of the time series [55]
as 75, 105 and 25 s for temperature, salinity and in vivo -uorescence time series,
respectively (not shown). This delay time was also used for the following calculations
of Lyapunov exponents and correlation dimensions.
The phase-space portraits of the attractors produced by the PTM did not clearly

exhibit any attractor (Fig. 2). Nevertheless, one may note clear di.erences between
the phase-space trajectories of in vivo -uorescence on the one hand and temperature
and salinity on the other hand. Indeed, the phase-space trajectories for temperature and
salinity appear as somewhat elongated and relatively narrow spatial distribution (Fig.
2a, b). On the contrary, phase-space trajectories of in vivo -uorescence did not ex-
hibit any characteristic shape, suggesting a more space 5lling—or ‘random’—behaviour
(Fig. 2c). Moreover, comparison of phase-space trajectories obtained from time series
recorded in high and low hydrodynamic conditions leads to further results. Phase-space
trajectories of temperature and salinity then appear clearly more structured in lower
hydrodynamic conditions (Fig. 2d, e), while the apparent randomness of in vivo -uo-
rescence phase-space trajectories remains whatever the hydrodynamic conditions (Fig.
2f).

4.2. Largest Lyapunov exponents

The LLE, �L, calculated over a range of embedding dimensions E exhibit clearly
di.erent behaviours (Fig. 3). By embedding dimension 8, the temperature and salinity
LLE converge to positive values which are all the more large that the hydrodynamic
conditions are high (Fig. 3a, b). In other words, the higher are the hydrodynamic
conditions, the larger the positive exponent, the more chaotic the system, and the
shorter the time scale of system predictability [53], This is con5rmed by the signi5cant
negative correlation between LLE of both temperature and salinity, and tidal current
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Fig. 2. Three-dimensional phase-space trajectories for temperature, salinity and in vivo -uorescence in low
(a, b, c; S9) and high (d, e, f; S11) hydrodynamic conditions.
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Fig. 3. The LLE �L estimates for temperature (a), salinity (b) and in vivo -uorescence (c) in high (black
circles; S15) and low (open circles; S23) hydrodynamic conditions.
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Table 2
The LLE �L estimates for temperature, salinity and in vivo -uorescence from the 24 available data sets, and
the related time scale of system predictability

�L Predictability (second)

T S F∗ T S F

S1 0.048 0.045 0.212 20.83 22.22 4.72
S2 0.044 0.043 0.223 22.73 23.26 4.48
S3 0.012 0.009 0.225 83.33 111.11 4.44
S4 0.098 0.105 0.243 10.20 9.52 4.12
S5 0.092 0.094 0.172 10.87 10.64 5.81
S6 0.021 0.023 0.221 47.62 43.48 4.52
S7 0.031 0.035 0.236 32.26 28.57 4.24
S8 0.055 0.057 0.198 18.18 17.54 5.05
S9 0.011 0.009 0.217 90.91 111.11 4.61
S10 0.091 0.088 0.171 10.99 11.36 5.85
S11 0.095 0.084 0.223 10.53 11.90 4.48
S12 0.038 0.039 0.181 26.32 25.64 5.52
S13 0.041 0.039 0.234 24.39 25.64 4.27
S14 0.042 0.039 0.182 23.81 25.64 5.49
S15 0.012 0.016 0.234 83.33 62.50 4.27
S16 0.076 0.079 0.172 13.16 12.66 5.81
S17 0.121 0.133 0.228 8.26 7.52 4.39
S18 0.038 0.041 0.196 26.32 24.39 5.10
S19 0.032 0.034 0.253 31.25 29.41 3.95
S20 0.085 0.088 0.228 11.76 11.36 4.39
S21 0.076 0.074 0.234 13.16 13.51 4.27
S22 0.025 0.017 0.254 40.00 58.82 3.94
S23 0.097 0.096 0.174 10.31 10.42 5.75
S24 0.071 0.075 0.187 14.08 13.33 5.35

Mean 0.056 0.057 0.212 28.53 30.06 4.79
SD 0.032 0.033 0.027 24.36 28.84 0.64
Min 0.011 0.009 0.171 8.26 7.52 3.94
Max 0.121 0.133 0.254 90.91 111.11 5.85

∗Following the absence of convergent behaviour for the -uorescence Lyapunov exponents, we reported
here the �L estimated for E = 10.

speed direction. The LLE and the associated time scale of predictability are shown in
Table 2.
On the contrary, whatever the hydrodynamic conditions, in vivo -uorescence LLE

remain signi5cantly higher than temperature and salinity LLE, indicating more chaotic
behaviour and less predictability, but never converge to any constant value, even when
the embedding dimension E is increased up to 10 (Fig. 3c).

4.3. Correlation integral

Fig. 4 show the correlation integral C(r) on logarithmic scales as a function of dis-
tance r by varying embedding dimension E from 1 to 10. Estimates of the correlation
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Fig. 4. Log–log plots of correlation integral C(r) versus distance r for various embedding dimensions E for
temperature (a), salinity (b) and in vivo -uorescence (c), shown for database S8.
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Table 3
Empirical estimates of the universal multifractal parameters H , C1 and ! for temperature, salinity and in
vivo -uorescence for the 24 studies data sets

Temperature Salinity In vivo -uorescence

H C1 ! H C1 ! H C1 !

S1 0.38 0.040 1.90 0.37 0.049 1.88 0.38 0.042 1.84
S2 0.36 0.040 1.85 0.35 0.050 1.84 0.43 0.059 1.80
S3 0.35 0.056 1.87 0.32 0.070 1.86 0.61 0.137 1.76
S4 0.34 0.050 1.86 0.32 0.050 1.86 0.45 0.056 1.90
S5 0.37 0.050 1.84 0.36 0.060 1.85 0.45 0.052 1.88
S6 0.37 0.060 1.84 0.36 0.050 1.89 0.58 0.135 1.75
S7 0.38 0.050 1.87 0.40 0.060 1.88 0.46 0.087 1.79
S8 0.36 0.060 1.86 0.38 0.050 1.87 0.37 0.052 1.83
S9 0.38 0.050 1.83 0.39 0.060 1.85 0.50 0.098 1.76
S10 0.35 0.040 1.88 0.40 0.031 1.88 0.46 0.073 1.92
S11 0.40 0.050 1.84 0.40 0.060 1.86 0.46 0.071 1.93
S12 0.36 0.048 1.86 0.40 0.057 1.89 0.45 0.058 1.79
S13 0.35 0.040 1.86 0.37 0.050 1.88 0.45 0.054 1.79
S14 0.36 0.050 1.85 0.35 0.060 1.86 0.46 0.068 1.79
S15 0.28 0.053 1.86 0.29 0.062 1.89 0.49 0.096 1.76
S16 0.37 0.060 1.85 0.36 0.060 1.86 0.40 0.077 1.78
S17 0.38 0.040 1.84 0.36 0.050 1.87 0.38 0.068 1.96
S18 0.36 0.050 1.88 0.36 0.060 1.88 0.43 0.073 1.78
S19 0.35 0.050 1.85 0.36 0.060 1.84 0.45 0.064 1.79
S20 0.42 0.060 1.89 0.34 0.070 1.91 0.40 0.054 1.88
S21 0.41 0.070 1.91 0.39 0.060 1.90 0.41 0.055 1.86
S22 0.36 0.057 1.90 0.35 0.070 1.85 0.60 0.120 1.75
S23 0.30 0.032 1.87 0.30 0.052 1.9 0.49 0.081 1.90
S24 0.34 0.050 1.89 0.36 0.040 1.89 0.55 0.091 1.76

Mean 0.36 0.050 1.86 0.36 0.056 1.87 0.46 0.076 1.82
SD 0.03 0.008 0.02 0.03 0.009 0.02 0.07 0.026 0.06
Max 0.42 0.070 1.91 0.40 0.070 1.91 0.61 0.137 1.96
Min 0.28 0.032 1.83 0.29 0.031 1.84 0.37 0.042 1.75

Min: minimum values, Max: maximum values, SD: standard deviation.

dimension � (see Eq. (9)) for temperature and salinity did not converge to any con-
stant value whatever the hydrodynamic conditions (Fig. 5a, b), and indicate the lack
of empirical evidence for deterministic chaos. Moreover, no signi5cant di.erences can
have been observed between temperature and salinity correlation dimensions, nor be-
tween the di.erent time series for either parameter, suggesting very similar behaviours
of temperature and salinity time series in phase-space.
The results for in vivo -uorescence time series are very similar with those of tem-

perature and salinity. Clearly no saturation, and therefore no evidence of low-order de-
terministic chaos, exist whatever the hydrodynamic conditions (Fig. 5c). As previously
shown for temperature and salinity time series, no signi5cant di.erences exist between
the correlation dimensions �. These results con5rm the previous lack of convergence
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Fig. 5. Correlation dimensions � versus embedding dimensions E for temperature (a), salinity (b) and in
vivo -uorescence (c) in high (black circles; S15) and low (open circles; S23) hydrodynamic conditions.
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of the LLE (see Fig. 3c), and indicate that there is no evidence for deterministic chaos
in the temporal -uctuations of phytoplankton biomass time series.

4.4. Multifractal structure

Values of the universal multifractal parameters H , C1 and ! estimated for tem-
perature, salinity and in vivo -uorescence time series are shown in Table 3. More
precisely, there were signi5cant di.erences between temperature, salinity and -uores-
cence H values. Fluorescence parameters were signi5cantly greater than temperature
and salinity which remain indistinguishable. The fractal codimensions C1 lead to di.er-
ent results: temperature, salinity and in vivo -uorescence codimensions C1 thus cannot
be statistically distinguished. Finally, the parameters ! also cannot be distinguished for
temperature, salinity and in vivo -uorescence (Table 3).
Nevertheless, correlation analyses conducted in order to infer any potential causality

between the structure of temperature, salinity and in vivo -uorescence time series and
both physical (i.e., current speed and direction) and biological (i.e., in vivo -uorescence
means and standard deviations) parameters (Table 4) lead to further results. It was then
found that the universal parameters (i.e., H , C1 and !) estimated for temperature and
salinity time series were neither signi5cantly correlated with current speed nor direction,
indicating a relative homogeneity in the small-scale temporal structure of these purely
passive scalars. On the contrary, the universal multifractal parameters characterizing in
vivo -uorescence variability were signi5cantly correlated with both current speed and
direction. More precisely, phytoplankton biomass distributions are more conservative
(i.e., low H values) and less sparse (i.e., low C1 values) both during ebb tide and in
high hydrodynamic conditions, while the LFevy index ! (i.e., the hierarchy of variability
levels present in the phytoplankton biomass distribution) increases with current speed.
Moreover, the multifractal parameters (i.e., H , C1 and !) are not correlated to means
and standard deviations (i.e., variability) for phytoplankton biomass time series.

5. Discussion and concluding remarks

We have presented here empirical evidence that purely passive tracers of the -ow
(temperature and salinity), as well as biological tracers such as phytoplankton cells
never exhibit signature for low-order deterministic chaos, whatever the intensity of
turbulence. On the opposite, the time series investigated clearly exhibited high-order
stochastic properties. In addition, the stochastic structure of purely passive scalars (i.e.,
temperature and salinity) remained invariant, while the one of phytoplankton biomass
must be regarded as highly structured in time by both hydrodynamic and advective
processes. We discussed hereafter (i) the relevance of the data analysis techniques
used to infer the existence of deterministic chaos and stochastic behaviour, especially
in the context of short time series that are the rule in most of ecological studies, and
(ii) the implications of our 5ndings on the future of modelling approaches in marine
ecology.
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Table 4
Correlation matrix of variables relative to the structure of temperature, salinity and in vivo -uorescence time series

Cspeed CDir Depth T S F SDT SDs SDF HT HS HF CIT CIS CIF !T !S !F
Cspeed 1.000 — — — — — — — — — — — — — — — — —
CDir −0.251 1.000 — — — — — — — — — — — — — — — —
Depth 0.315 −0.787∗∗ 1.000 — — — — — — — — — — — — — — —
T −0.350 0.824∗∗ −0.672∗∗ 1.000 — — — — — — — — — — — — — —
S 0.351 −0.746∗∗ 0.728∗∗ −0.660∗∗ 1.000 — — — — — — — — — — — — —
F −0.330 0.893∗∗ −0.734∗∗ −0.734∗∗ −0.689∗∗ 1.000 — — — — — — — — — — — —
SDT 0.576∗∗ −0.496∗ 0.440∗ −0.455* 0.026 −0.746∗∗ 1.000 — — — — — — — — — — —
SDS 0.690∗∗ −0.185 0.009 −0.213 −0.260 −0.416* 0.833∗∗ 1.000 — — — — — — — — — —
SDF 0.110 −0.140 −0.135 0.100 −0.360 −0.073 0.539∗∗ 0.649∗∗ 1.000 — — — — — — — — —
HT 0.202 0.223 −0.252 0.267 −0.149 0.291 −0.398 −0.028 −0.475* 1.000 — — — — — — — —
HS 0.048 0.102 −0.214 −0.040 −0.034 0.095 −0.306 0.015 −0.376 0.636∗∗ 1.000 — — — — — — —
HF −0.520∗∗ −0.405∗ 0.336 −0.187 0.123 −0.415∗ 0.043 −0.330 −0.120 −0.329 −0.242 1.000 — — —- — — —
CIT −0.235 0.086 0.006 0.274 −0.107 0.230 −0.150 −0.213 −0.320 0.405 * 0.115 0.102 1.000 — — — — —
CIS −0.360 0.135 −0.037 0.330 −0.075 0.243 −0.079 −0.108 −0.146 0.240 −0.211 0.165 0.500 1.000 — — — —
CIF −0.529∗∗ −0.408∗ 0.378 −0.210 0.189 −0.364 0.174 −0.204 0.058 −0.246 −0.250 0.881∗∗ 0.241 0.248 1.000 — — —
!T 0.048 0.201 −0.058 0.492∗ −0.204 0.142 0.103 0.204 0.104 0.109 0.048 −0.019 0.212 −0.005 −0.118 1.000 — —-
!S 0.141 0.059 −0.174 0.171 −0.196 0.067 0.391 0.168 0.089 0.012 −0.021 −0.078 0.088 −0.114 −0.047 0.507 1.000 —
!F 0.901∗∗ −0.155 0.233 −0.287 0.313 −0.219 0.294 0.566∗∗ 0.139 0.246 0.092 −0.501∗ −0.324 −0.296 −0.517∗ −0.021 0.118 1.000

Cspeed and CDir : current speed and direction; SDT, SDS and SDF: standard deviation of temperature, salinity and -uorescence time series; the subscript T , S
and F associated to the parameters H , C1 and ! respectively identify temperature, salinity and -uorescence universal multifractal structures.

∗: 5% con5dence level.
∗∗: 1% con5dence level.
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5.1. Searching for determinism and stochasticity in ecological time series

The PTM: a qualitative prerequisite in the search for chaos.
The PTM method is probably the faster and most direct method to infer the potential

existence of deterministic chaos. Creating the phase-space attractor of a system with
a computer is indeed a very simple task. All that is needed is the copy of the data
5le, paste it shifted by one, two or more places, and plot the data. Thus, a subjective
assessment of the ‘degree of randomness’ can be reached almost instantaneously from
this kind of plot. It is nevertheless evident here (see Fig. 2) that the characteristic shape
of the attractor is not easy to describe in simple terms. Fig. 2 shows projections of
phase-space trajectories onto three-dimensional space, so that the fact that no attractors
can be seen does not imply that they do not exist when embedding in higher dimen-
sional space. However, a strange attractor of higher-dimensional space often re-ects its
shape onto the lower dimensional space as well. For instance, the trajectory onto the
two-dimensional phase-space [embedding dimension E = 2 in Eq. (4)] reconstructed
from the time series of variable x of the Lorenz equations [56,71,72] shows a clear
strange attractor. These results can then rather be regarded as a qualitative prerequisite
analysis and demonstrate that inferring the existence of any deterministic structure be-
yond the highly -uctuating behaviour exhibiting by temperature, salinity and in vivo
-uorescence time series (Fig. 1) is a far more di0cult task.

5.1.1. LLEs and the ‘edge of chaos’
The LLE estimates quantitatively con5rm the subjective results of the PTM, i.e.,

a lower dimensional behaviour in low hydrodynamic conditions for temperature and
salinity time series, and a higher dimensional behaviour for phytoplankton biomass
time series which did not exhibit any convergent behaviour of their LLE for val-
ues of the embedding dimension E up to 10 whatever the hydrodynamical conditions.
What may be regarded as being very important for ecologists is that, unlike frac-
tal dimensions, Lyapunov exponents remain well de5ned in the presence of dynami-
cal noise and can be estimated by methods that explicitly incorporate noise [73,74].
This leads to consider that estimating Lyapunov exponents is the best approach for
detecting chaos in ecological systems [14]. One must nevertheless note some limi-
tations of Lyapunov exponent estimates to detect deterministic chaos, lying both in
estimates accuracy and the minimum number of data points required in the analy-
sis. First, although the algorithm used in this paper [53] provides a good estima-
tion of the LLEs for noise-free synthetically generated time series from chaotic dy-
namics, the estimation for experimental time series is still relatively imprecise [75].
Second, it has been stressed that to detect a chaotic attractor of dimension 3, at least
1000–30,000 data points are needed [53], while others [76] found that 5000 data
points is a lower bound for the detection of chaos on some simple dynamical sys-
tems known to display chaotic behaviours in certain regimes. Moreover, Vassilicos et
al. [77] demonstrated how the tests for chaos can give positive answers, e.g. positive
Lyapunov exponents, when subsamples with smaller number of data points are used,
and how these Lyapunov exponents converge to zero when the number of data points is
increased.
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Fig. 6. The LLE �L estimates for temperature (continuous black line), salinity (dashed line) and in vivo
-uorescence (continuous grey line) from the original 172,800 data points time series.

In order to con5rm these results, we estimated the LLEs of the larger original time
series (i.e., 172,800 data points) of temperature, salinity and in vivo -uorescence that
were divided into 24 subsections of 7200 points in the present work. Subsequent results
(Fig. 6) then indicated that LLE of temperature, salinity and phytoplankton biomass
time series remain positive, but converge to zero. As previously mentioned, positive
LLE indicates chaotic dynamics, but values quite close to zero should therefore only
be interpreted as an order of magnitude. As a consequence, the di.erent convergent
positive values of the di.erent LLE estimated for temperature and salinity time series
in high and low hydrodynamic conditions (Fig. 3a, b) suggest a phenomenological
shift between low dimensional chaos and high dimensional stochasticity as the one
observed by Ruelle and Takens [40] near the transition to turbulence. Alternatively, a
positive LLE close to zero can be interpreted as having been derived from a stochastic
time series with many degrees of freedom [78]. More generally, one may note that
systems with a Lyapunov exponent of zero are associated with a state called the edge
of chaos, where complex behaviour is the rule. The exact meaning of the edge of chaos
depends on the context within which it is used, but roughly speaking, it describes the
vicinity of some instability point separating a region of more ordered (or less random)
behaviour, from a region of less ordered (or more random) behaviour. The edge of
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Fig. 7. Correlation dimensions � estimates versus embedding dimensions E for temperature, salinity and in
vivo -uorescence from the original 172,800 data points time series.

chaos has indeed attracted considerable interest among biologists and ecologists in
the last few years because processes such as evolution or adaptative behaviour have
been precisely shown to be just at the edge of chaos [79–81]. Such a critical state
would increase the adaptative e0ciency of a given system, for instance in response to
-uctuating environmental conditions, and could then be of prime interest in the future
understanding of ecosystems functioning.

5.1.2. Correlation integrals
While Smith [82] has showed that if the data set is small, the correlation dimension

� (see Eq. (9)) appears to converge towards a 5nite value even in the absence of
chaos, this is obviously not the case in our case (Fig. 5). Moreover, correlation dimen-
sion � estimates for the 172,800 data points time series (Fig. 7) did not converge to
any constant value, and con5rm the lack of empirical evidence for deterministic chaos
previously shown with smaller time series (Fig. 7). Our results then cannot be asso-
ciated with sampling limitation. A correlation dimension of 2 has thus been identi5ed
on the basis of a 1200 values chlorophyll transect recorded in the central waters of the
Ligurian Sea (NW Mediterranean Sea) [83]. This result then con5rms the e0ciency of
the correlation algorithm to detect low deterministic chaos when applied to small data
sets. This also suggests—as previously done in this paper—that di.erent hydrodynam-
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ical conditions might be at the origin of di.erential space–time structures, in terms
of low-order deterministic chaos or high-order stochasticity. Then, high hydrodynamic
conditions, as those occurring in the Eastern English Channel, could be at the origin
of temperature, salinity and phytoplankton biomass distributions characterized by their
high-order stochasticity, while in low hydrodynamic conditions, as those encountered
in the stable waters of the Ligurian Sea, phytoplankton distribution could be rather
characterized by a low-order deterministic behaviour.
While our results suggest that temperature, salinity and phytoplankton biomass ex-

hibit a higher dimensionality in high hydrodynamic conditions, we cannot conclude, on
the basis of the three previously used analysis techniques, to the existence of low-order
deterministic chaos, but only to a lower dimensionality in low hydrodynamic condi-
tions. The di.erential multifractal structures (Table 3) exhibited by temperature, salinity
and phytoplankton biomass time series con5rm and generalize the results suggested by
the analysis techniques devoted to the identi5cation of deterministic chaos.

5.1.3. Stochastic characterization of turbulent processes
The multifractal analysis techniques used in this paper have widely been shown

to provide valid estimates of the whole stochastic behaviour of a given time series
or transect, even when performed on small data sets, i.e., less than 1000 data points
[30–32,65,84,85]. The multifractal parameters estimated for temperature, salinity and
phytoplankton biomass in this study (Table 3) then clearly appear to be in the range
of values previously obtained for a wide variety of tidal conditions in the Southern
Bight of the North Sea, the Eastern English Channel and the St Lawrence estuary
[27,30–32,34,44]. This shows that similar processes could be at the origin of both
physical (i.e., temperature and salinity) and biological (phytoplankton biomass) tem-
poral structure, and consequently that small-scale phytoplankton biomass distribution
can be regarded as being passively advected by turbulent -uid motions, at least at the
scale of the whole tidal cycle. However, correlation analyses have shown that temper-
ature and salinity multifractal structures remain the same whatever the tidal conditions,
while phytoplankton biomass exhibits very speci5c temporal patterns (Table 4). This
then indicates that even in highly turbulent environments as the one experienced in
the Eastern English Channel, phytoplankton biomass cannot be regarded as being a
purely passive scalar even on smaller scales, but rather exhibit an altogether level of
small-scale temporal structure related to the space–time scales of the tidal forcing. In
particular, the observed signi5cant negative correlation between multifractal structure
of phytoplankton biomass and current speed indicate that the phytoplankton assem-
blages sampled in the present study are more heterogeneously distributed (i.e., high
H and C1, values) in low hydrodynamic conditions. Moreover, the values of the third
multifractal parameter ! (! = 1:82 ± 0:06 SD; Table 3) indicates that phytoplankton
biomass cannot be regarded as log-normally distributed—in which case !=2—even in
high hydrodynamic conditions. On the contrary, this value is typically in the range of
! values estimated for phytoplankton biomass distribution over similar ranges of scales
[27,30–32,34,44]. The positive correlation between ! and the current speed neverthe-
less indicates a di.erential phytoplankton biomass structure characterized by a greater
complexity in the hierarchy of its variability levels in high hydrodynamic conditions.
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On the other hand, multifractal parameters (i.e., H and C1; Table 4) are signi5cantly
correlated to current direction, but do not exhibit any signi5cant correlation with mean
phytoplankton biomass. This suggests that phytoplankton biomass structure cannot be
regarded as resulting from any density-dependent process associated with tidal advec-
tion, but rather from the qualitative nature of phytoplankton assemblages occurring
during ebb and -ood, as previously suggested [32,34]. While many phenomenologi-
cal hypotheses could be proposed to explain these di.erential temporal distributions of
phytoplankton biomass—such as the di.erential e.ects of turbulence and phytoplankton
composition on the formation, maintenance and structure of phytoplankton aggregates
[86–90]—the resolution of this particular issue is beyond the scope of this contribu-
tion. One can nevertheless refer to Refs. [32,34] for further comments on the potential
causes and consequences of small-scale heterogeneous phytoplankton distributions.
The universal multifractal formalism can also be related to the dimension formalism

developed to study strange attractors. Especially, one may write [91]

�= d− K(2) ; (10)

where � is the correlation dimension de5ned above (see Eq. (9)), d is the Euclidean
dimension of the observation space (d= 1 for time series, therefore the corresponding
� estimate is for embedding dimension E = 2) and K(2) is the second order scaling
moment K(q) de5ned as [60,61,92–94]:

K(q) =
C1

!− 1
(q! − q) ; (11)

where K(q) is the scaling moment function which describes the multiscaling of the
statistical moments of order q. Correlation dimensions � estimated from the correlation
integral algorithm [see Eq. (9)] and from Eq. (10) where K(2) is reached with C1,
! (Table 3) and q = 2 in Eq. (11) are then very similar for temperature, salinity
and in vivo -uorescence (Fig. 8). The dimension formalism having been developed to
describe attractors exhibiting a very high dimensionality, this result then con5rms that
the time series studied in the present paper are rather characterized by their high-order
stochasticity rather than by any kind of low-order behaviour.
Nonlinear dynamical systems being capable of such a variety of behaviours, the

present results indicate that the use of a single technique of time series analysis should
not be relied on too heavily [95]. In particular, the emphasis of this paper is on
supplementing techniques, rather than competing with them. When only one technique
is used to analyze a time series, the results are expected to be at best incomplete,
and at worst misleading. For instance, the in5nite number of dimensions characterizing
strange attractors [54,96,97] when speci5c mathematical tests (such as the correlation
integral algorithm) fail to 5nd any signs of low-order deterministic behaviour could be
advantageously described in the framework of universal multifractals, i.e., high-order
stochastic behaviour.
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Fig. 8. Plots of the correlation dimension � estimated following Eqs. (9) and (10), shown together with their
best linear 5t for temperature (a), salinity (b) and in vivo -uorescence (c) from the original 172,800 data
points time series. The 5rst bissectrix (dotted line) is shown for comparison.
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5.2. Dealing with determinism and stochasticity: a challenge for future modelling in
marine ecology

Following the great deal of attention recently devoted to detect and analyze chaos
in plankton ecology [9,21–25], the results concerning the multifractal (i.e., stochastic)
structure of plankton populations [26,30–34], and more generally the increasing amount
of literature providing evidence for nonlinearity in population growth and ecological
interactions [98–100] distinguishing between low dimensional deterministic chaos and
high dimensional stochasticity then seems to be at the core of an emerging ecological
thought process. Thus, as previously emphasized [14], ‘the study of chaos is impor-
tant for ecology because the lessons of nonlinear dynamics will provide very di.erent
answers than the linear models traditionally emphasized by ecologists’.
As developed above, the central tenet of deterministic chaos and stochasticity lies in

their related predictive ability. Chaotic systems are predictable over short time scales
because they are deterministic; the lack of predictive power over long-time scales stems
from the lack of complete information about the exact location of initial conditions. In
contrast, systems that are stochastic are unpredictable over any time scale because of
the probabilistic nature of their components. Nevertheless, systems can have endoge-
nous dynamics that are chaotic in the presence of exogenous stochastic perturbation.
Such interactions between systems with chaotic dynamics and stochasticity leads to in-
teresting behaviours [101–103]. The number of investigations of chaos in modelling
ecological systems with stochasticity has nevertheless still been quite small. Thus,
investigations of a logistic model with additive noise showed that chaotic dynamics
persisted [102,104]. Rand and Wilson [103] emphasized how the interaction between
the deterministic dynamics and noise can lead to a case where the average Lyapunov
exponent is positive, even though the purely deterministic system with the same pa-
rameters is not chaotic. While these works provide further evidence for the ubiquity of
chaos by showing that individual-based models can appear deterministic and chaotic at
the level of the population, actual key challenges in the study of ecological systems
involve ways to deal with the collective dynamics of various ensembles of individuals,
and to understand how to relate phenomena across scales [105]. While Denman and
Powell [106] emphasized that ecological responses could not be linked to a particular
physical scale, transfers of variability across scales have indeed been found in models
for predator-prey interactions that can display variability at frequencies other than that
of the periodic (i.e., seasonal) forcing [7,107–109]. A direction of future research could
then be to focus on the responses to more realistic stochastic forcing (i.e., multifractal)
of such modelling approaches in terms of determinism and/or stochasticity.
Distinguishing between chaos and stochastic processes could also have considerable

implications for the design and evaluation of sampling schemes in the coastal ocean.
We indeed demonstrated here that the degree of stochasticity and/or determinism ex-
hibited by phytoplankton populations varies with both hydrodynamical and advective
conditions. It has also been demonstrated over a wider range of scales (i.e., from 1 s to
48 h) that the stochastic structure of phytoplankton biomass varies with the sampling
scale [30–32]. In that way, Rand and Wilson [110] theoretically demonstrated that
the optimal scale at which to measure a given process is described as the one that
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‘maximizes the ratio of deterministic information to stochastic -uctuations’, while
Pascual and Levin [111] developed a determinism test from nonlinear data analysis to
describe and to identify a characteristic length scale at which to average spatio-temporal
systems. Finally, one may note here that like most oceanographic data, the data ana-
lyzed here contain both spatial and temporal components, because sampling has been
accomplished in the Eulerian sense, that is, in a reference frame 5xed with respect
to the moving -uid. While Seuront et al. [31] demonstrated that the stochastic struc-
ture of a given signal is wholly dependent on the scale of the sampling (i.e., Eule-
rian/Lagrangian transition), Eulerian sampling of spatially heterogeneous populations
have also been suggested to obscure any deterministic signal beyond the resolving
capabilities of presently available nonlinear signal processing techniques [15]. Thus,
as previously suggested in a more general ecological framework [112,113], the grain
and extent of a given sampling experiment, as the way the samples are taken, should
be regarded as being essential components to the understanding of a given time se-
ries, as precise numerical values of Lyapunov exponents, correlations dimensions and
multifractals parameters might be.
Thus, in the general background of spatio-temporal intermittency encountered in the

ocean [38], future studies investigating the magnitude of keys -uxes such as primary
production should take a great advantage to focus on the deterministic/stochastic
duality to reach robust estimates and modelling of stocks and -uxes, all the more
since numerical modelling are extremely sensitive even to minor changes in parameter
values [114,115].
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